Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Proc Natl Acad Sci U S A ; 119(32): e2203760119, 2022 08 09.
Article in English | MEDLINE | ID: covidwho-2308769

ABSTRACT

The emergence of SARS-CoV-2 variants with enhanced transmissibility, pathogenesis, and resistance to vaccines presents urgent challenges for curbing the COVID-19 pandemic. While Spike mutations that enhance virus infectivity or neutralizing antibody evasion may drive the emergence of these novel variants, studies documenting a critical role for interferon responses in the early control of SARS-CoV-2 infection, combined with the presence of viral genes that limit these responses, suggest that interferons may also influence SARS-CoV-2 evolution. Here, we compared the potency of 17 different human interferons against multiple viral lineages sampled during the course of the global outbreak, including ancestral and five major variants of concern that include the B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), B.1.617.2 (delta), and B.1.1.529 (omicron) lineages. Our data reveal that relative to ancestral isolates, SARS-CoV-2 variants of concern exhibited increased interferon resistance, suggesting that evasion of innate immunity may be a significant, ongoing driving force for SARS-CoV-2 evolution. These findings have implications for the increased transmissibility and/or lethality of emerging variants and highlight the interferon subtypes that may be most successful in the treatment of early infections.


Subject(s)
Antiviral Agents , COVID-19 , Interferons , SARS-CoV-2 , Antibodies, Neutralizing , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , COVID-19/transmission , Humans , Interferons/pharmacology , Interferons/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics
2.
Annu Rev Immunol ; 41: 561-585, 2023 04 26.
Article in English | MEDLINE | ID: covidwho-2304270

ABSTRACT

Infection with SARS-CoV-2 results in clinical outcomes ranging from silent or benign infection in most individuals to critical pneumonia and death in a few. Genetic studies in patients have established that critical cases can result from inborn errors of TLR3- or TLR7-dependent type I interferon immunity, or from preexisting autoantibodies neutralizing primarily IFN-α and/or IFN-ω. These findings are consistent with virological studies showing that multiple SARS-CoV-2 proteins interfere with pathways of induction of, or response to, type I interferons. They are also congruent with cellular studies and mouse models that found that type I interferons can limit SARS-CoV-2 replication in vitro and in vivo, while their absence or diminution unleashes viral growth. Collectively, these findings point to insufficient type I interferon during the first days of infection as a general mechanism underlying critical COVID-19 pneumonia, with implications for treatment and directions for future research.


Subject(s)
COVID-19 , Interferon Type I , Mice , Humans , Animals , Interferons/pharmacology , SARS-CoV-2
3.
Life Sci Alliance ; 6(6)2023 06.
Article in English | MEDLINE | ID: covidwho-2273866

ABSTRACT

The IFN system constitutes a powerful antiviral defense machinery. Consequently, effective IFN responses protect against severe COVID-19 and exogenous IFNs inhibit SARS-CoV-2 in vitro. However, emerging SARS-CoV-2 variants of concern (VOCs) may have evolved reduced IFN sensitivity. Here, we determined differences in replication and IFN susceptibility of an early SARS-CoV-2 isolate (NL-02-2020) and the Alpha, Beta, Gamma, Delta, and Omicron VOCs in Calu-3 cells, iPSC-derived alveolar type-II cells (iAT2) and air-liquid interface (ALI) cultures of primary human airway epithelial cells. Our data show that Alpha, Beta, and Gamma replicated to similar levels as NL-02-2020. In comparison, Delta consistently yielded higher viral RNA levels, whereas Omicron was attenuated. All viruses were inhibited by type-I, -II, and -III IFNs, albeit to varying extend. Overall, Alpha was slightly less sensitive to IFNs than NL-02-2020, whereas Beta, Gamma, and Delta remained fully sensitive. Strikingly, Omicron BA.1 was least restricted by exogenous IFNs in all cell models. Our results suggest that enhanced innate immune evasion rather than higher replication capacity contributed to the effective spread of Omicron BA.1.


Subject(s)
COVID-19 , Interferons , Humans , Interferons/pharmacology , SARS-CoV-2 , Antiviral Agents/pharmacology
4.
Life Sci ; 301: 120624, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-2105537

ABSTRACT

AIMS: To study effects on cellular innate immune responses to ORF8, ORF10, and Membrane protein (M protein) from the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19, in combination with cannabidiol (CBD). MAIN METHODS: HEK293 cells transfected with plasmids expressing control vector, ORF8, ORF10, or M protein were assayed for cell number and markers of apoptosis at 24 h, and interferon and interferon-stimulated gene expression at 14 h, with or without CBD. Cells transfected with polyinosinic:polycytidylic acid (Poly (I:C)) were also studied as a general model of RNA-type viral infection. KEY FINDINGS: Reduced cell number and increased early and late apoptosis were found when expression of viral genes was combined with 1-2 µM CBD treatment, but not in control-transfected cells treated with CBD, or in cells expressing viral genes but treated only with vehicle. In cells expressing viral genes, CBD augmented expression of IFNγ, IFNλ1 and IFNλ2/3, as well as the 2'-5'-oligoadenylate synthetase (OAS) family members OAS1, OAS2, OAS3, and OASL. CBD also augmented expression of these genes in control cells not expressing viral genes, but without enhancing apoptosis. CBD similarly enhanced the cellular anti-viral response to Poly (I:C). SIGNIFICANCE: Our results demonstrate a poor ability of HEK293 cells to respond to SARS-CoV-2 genes alone, but an augmented innate anti-viral response to these genes in the presence of CBD. Thus, CBD may prime components of the innate immune system, increasing readiness to respond to RNA-type viral infection without activating apoptosis, and could be studied for potential in prophylaxis.


Subject(s)
COVID-19 , Cannabidiol , Antiviral Agents , Apoptosis , Cannabidiol/pharmacology , HEK293 Cells , Humans , Immunity, Innate/genetics , Interferons/pharmacology , Membrane Proteins , Poly I-C/pharmacology , RNA , SARS-CoV-2
5.
Vet Microbiol ; 275: 109597, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2086823

ABSTRACT

Interferon-induced transmembrane proteins (IFITMs) are broad-spectrum antiviral proteins that inhibit numerous virus infections by impeding viral entry into target cells. However, increasing evidence suggests diverse functions of IFITMs in virus infection, especially with the coronavirus. We analyzed the effect of chicken interferon-induced transmembrane proteins (chIFITMs) on coronavirus infectious bronchitis virus (IBV) infection in vitro. We demonstrated that the antiviral effects of IFITMs are dependent on cell and virus types. The overexpression of chIFITM1 dramatically promoted the replication of IBV Beaudette strain in the chicken hepatocellular carcinoma cell line, LMH. Mechanistically, chIFITMs share roughly the same subcellular localization in different host cells, and overexpressed of chIFITM1 have no effect of viral attachment and entry. Further studies revealed that mutations of amino acids at key positions (60KSRD63, 68KDFV71) in the intracellular loop domain (CIL) caused loss of the promoted function. Interaction with downstream proteins in co-response to viral infection could be the primary reason behind variable functions of chIFITM1 in different cells. In all, our study explored the functions of chIFITMs in viral infection from a new perspective.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Animals , Infectious bronchitis virus/genetics , Chickens , Coronavirus Infections/veterinary , Antiviral Agents/pharmacology , Interferons/pharmacology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Virus Replication
6.
Int J Mol Sci ; 23(18)2022 Sep 19.
Article in English | MEDLINE | ID: covidwho-2039878

ABSTRACT

Antiviral type I interferons (IFN) produced in the early phase of viral infections effectively inhibit viral replication, prevent virus-mediated tissue damages and promote innate and adaptive immune responses that are all essential to the successful elimination of viruses. As professional type I IFN producing cells, plasmacytoid dendritic cells (pDC) have the ability to rapidly produce waste amounts of type I IFNs. Therefore, their low frequency, dysfunction or decreased capacity to produce type I IFNs might increase the risk of severe viral infections. In accordance with that, declined pDC numbers and delayed or inadequate type I IFN responses could be observed in patients with severe coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as compared to individuals with mild or no symptoms. Thus, besides chronic diseases, all those conditions, which negatively affect the antiviral IFN responses lengthen the list of risk factors for severe COVID-19. In the current review, we would like to briefly discuss the role and dysregulation of pDC/type I IFN axis in COVID-19, and introduce those type I IFN-dependent factors, which account for an increased risk of COVID-19 severity and thus are responsible for the different magnitude of individual immune responses to SARS-CoV-2.


Subject(s)
COVID-19 , Interferon Type I , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Interferons/pharmacology , SARS-CoV-2 , Virus Replication
7.
J Virol ; 96(11): e0036422, 2022 06 08.
Article in English | MEDLINE | ID: covidwho-1854234

ABSTRACT

Effective broad-spectrum antivirals are critical to prevent and control emerging human coronavirus (hCoV) infections. Despite considerable progress made toward identifying and evaluating several synthetic broad-spectrum antivirals against hCoV infections, a narrow therapeutic window has limited their success. Enhancing the endogenous interferon (IFN) and IFN-stimulated gene (ISG) response is another antiviral strategy that has been known for decades. However, the side effects of pegylated type-I IFNs (IFN-Is) and the proinflammatory response detected after delayed IFN-I therapy have discouraged their clinical use. In contrast to IFN-Is, IFN-λ, a dominant IFN at the epithelial surface, has been shown to be less proinflammatory. Consequently, we evaluated the prophylactic and therapeutic efficacy of IFN-λ in hCoV-infected airway epithelial cells and mice. Human primary airway epithelial cells treated with a single dose of IFN-I (IFN-α) and IFN-λ showed similar ISG expression, whereas cells treated with two doses of IFN-λ expressed elevated levels of ISG compared to that of IFN-α-treated cells. Similarly, mice treated with two doses of IFN-λ were better protected than mice that received a single dose, and a combination of prophylactic and delayed therapeutic regimens completely protected mice from a lethal Middle East respiratory syndrome CoV (MERS-CoV) infection. A two-dose IFN-λ regimen significantly reduced lung viral titers and inflammatory cytokine levels with marked improvement in lung inflammation. Collectively, we identified an effective regimen for IFN-λ use and demonstrated the protective efficacy of IFN-λ in MERS-CoV-infected mice. IMPORTANCE Effective antiviral agents are urgently required to prevent and treat individuals infected with SARS-CoV-2 and other emerging viral infections. The COVID-19 pandemic has catapulted our efforts to identify, develop, and evaluate several antiviral agents. However, a narrow therapeutic window has limited the protective efficacy of several broad-spectrum and CoV-specific antivirals. IFN-λ is an antiviral agent of interest due to its ability to induce a robust endogenous antiviral state and low levels of inflammation. Here, we evaluated the protective efficacy and effective treatment regimen of IFN-λ in mice infected with a lethal dose of MERS-CoV. We show that while prophylactic and early therapeutic IFN-λ administration is protective, delayed treatment is detrimental. Notably, a combination of prophylactic and delayed therapeutic administration of IFN-λ protected mice from severe MERS. Our results highlight the prophylactic and therapeutic use of IFN-λ against lethal hCoV and likely other viral lung infections.


Subject(s)
Antiviral Agents , Coronavirus Infections , Interferons , Middle East Respiratory Syndrome Coronavirus , Animals , Antiviral Agents/pharmacology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Humans , Interferons/pharmacology , Mice , Interferon Lambda
8.
Sci Rep ; 12(1): 6972, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1815600

ABSTRACT

Common alphacoronaviruses and human rhinoviruses (HRV) induce type I and III interferon (IFN) responses important to limiting viral replication in the airway epithelium. In contrast, highly pathogenic betacoronaviruses including SARS-CoV-2 may evade or antagonize RNA-induced IFN I/III responses. In airway epithelial cells (AECs) from children and older adults we compared IFN I/III responses to SARS-CoV-2 and HRV-16, and assessed whether pre-infection with HRV-16, or pretreatment with recombinant IFN-ß or IFN-λ, modified SARS-CoV-2 replication. Bronchial AECs from children (ages 6-18 years) and older adults (ages 60-75 years) were differentiated ex vivo to generate organotypic cultures. In a biosafety level 3 (BSL-3) facility, cultures were infected with SARS-CoV-2 or HRV-16, and RNA and protein was harvested from cell lysates 96 h. following infection and supernatant was collected 48 and 96 h. following infection. In additional experiments cultures were pre-infected with HRV-16, or pre-treated with recombinant IFN-ß1 or IFN-λ2 before SARS-CoV-2 infection. In a subset of experiments a range of infectious concentrations of HRV-16, SARS-CoV-2 WA-01, SARS-CoV-2 Delta variant, and SARS-CoV-2 Omicron variant were studied. Despite significant between-donor heterogeneity SARS-CoV-2 replicated 100 times more efficiently than HRV-16. IFNB1, INFL2, and CXCL10 gene expression and protein production following HRV-16 infection was significantly greater than following SARS-CoV-2. IFN gene expression and protein production were inversely correlated with SARS-CoV-2 replication. Treatment of cultures with recombinant IFNß1 or IFNλ2, or pre-infection of cultures with HRV-16, markedly reduced SARS-CoV-2 replication. In addition to marked between-donor heterogeneity in IFN responses and viral replication, SARS-CoV-2 (WA-01, Delta, and Omicron variants) elicits a less robust IFN response in primary AEC cultures than does rhinovirus, and heterologous rhinovirus infection, or treatment with recombinant IFN-ß1 or IFN-λ2, reduces SARS-CoV-2 replication, although to a lesser degree for the Delta and Omicron variants.


Subject(s)
COVID-19 Drug Treatment , Interferons , Adolescent , Aged , Antiviral Agents , Child , Humans , Interferons/pharmacology , Middle Aged , RNA , Rhinovirus , SARS-CoV-2
9.
PLoS One ; 17(4): e0266412, 2022.
Article in English | MEDLINE | ID: covidwho-1793503

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the coronavirus disease-19 (COVID-19) pandemic, was identified in late 2019 and caused >5 million deaths by February 2022. To date, targeted antiviral interventions against COVID-19 are limited. The spectrum of SARS-CoV-2 infection ranges from asymptomatic to fatal disease. However, the reasons for varying outcomes to SARS-CoV-2 infection are yet to be elucidated. Here we show that an endogenously activated interferon lambda (IFNλ1) pathway leads to resistance against SARS-CoV-2 infection. Using a well-differentiated primary nasal epithelial cell (WD-PNEC) culture model derived from multiple adult donors, we discovered that susceptibility to SARS-CoV-2 infection, but not respiratory syncytial virus (RSV) infection, varied. One of four donors was resistant to SARS-CoV-2 infection. High baseline IFNλ1 expression levels and associated interferon stimulated genes correlated with resistance to SARS-CoV-2 infection. Inhibition of the JAK/STAT pathway in WD-PNECs with high endogenous IFNλ1 secretion resulted in higher SARS-CoV-2 titres. Conversely, prophylactic IFNλ treatment of WD-PNECs susceptible to infection resulted in reduced viral titres. An endogenously activated IFNλ response, possibly due to genetic differences, may be one explanation for the differences in susceptibility to SARS-CoV-2 infection in humans. Importantly, our work supports the continued exploration of IFNλ as a potential pharmaceutical against SARS-CoV-2 infection.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Antiviral Agents/pharmacology , Epithelial Cells/metabolism , Humans , Interferons/metabolism , Interferons/pharmacology , Janus Kinases/metabolism , SARS-CoV-2 , STAT Transcription Factors/metabolism , Signal Transduction
10.
J Virol ; 96(7): e0170521, 2022 04 13.
Article in English | MEDLINE | ID: covidwho-1736024

ABSTRACT

The coronavirus SARS-CoV-2 caused the COVID-19 global pandemic leading to 5.3 million deaths worldwide as of December 2021. The human intestine was found to be a major viral target which could have a strong impact on virus spread and pathogenesis since it is one of the largest organs. While type I interferons (IFNs) are key cytokines acting against systemic virus spread, in the human intestine type III IFNs play a major role by restricting virus infection and dissemination without disturbing homeostasis. Recent studies showed that both type I and III IFNs can inhibit SARS-CoV-2 infection, but it is not clear whether one IFN controls SARS-CoV-2 infection of the human intestine better or with a faster kinetics. In this study, we could show that type I and III IFNs both possess antiviral activity against SARS-CoV-2 in human intestinal epithelial cells (hIECs); however, type III IFN is more potent. Shorter type III IFN pretreatment times and lower concentrations were required to efficiently reduce virus load compared to type I IFNs. Moreover, type III IFNs significantly inhibited SARS-CoV-2 even 4 h postinfection and induced a long-lasting antiviral effect in hIECs. Importantly, the sensitivity of SARS-CoV-2 to type III IFNs was virus specific since type III IFN did not control VSV infection as efficiently. Together, these results suggest that type III IFNs have a higher potential for IFN-based treatment of SARS-CoV-2 intestinal infection compared to type I IFNs. IMPORTANCE SARS-CoV-2 infection is not restricted to the respiratory tract and a large number of COVID-19 patients experience gastrointestinal distress. Interferons are key molecules produced by the cell to combat virus infection. Here, we evaluated how two types of interferons (type I and III) can combat SARS-CoV-2 infection of human gut cells. We found that type III interferons were crucial to control SARS-CoV-2 infection when added both before and after infection. Importantly, type III interferons were also able to produce a long-lasting effect, as cells were protected from SARS-CoV-2 infection up to 72 h posttreatment. This study suggested an alternative treatment possibility for SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Interferon Type I , Interferons , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cells, Cultured , Epithelial Cells , Humans , Interferon Type I/pharmacology , Interferons/pharmacology , SARS-CoV-2/drug effects , Interferon Lambda
11.
Nat Commun ; 13(1): 679, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1671560

ABSTRACT

Emergence of mutant SARS-CoV-2 strains associated with an increased risk of COVID-19-related death necessitates better understanding of the early viral dynamics, host responses and immunopathology. Single cell RNAseq (scRNAseq) allows for the study of individual cells, uncovering heterogeneous and variable responses to environment, infection and inflammation. While studies have reported immune profiling using scRNAseq in terminal human COVID-19 patients, performing longitudinal immune cell dynamics in humans is challenging. Macaques are a suitable model of SARS-CoV-2 infection. Our longitudinal scRNAseq of bronchoalveolar lavage (BAL) cell suspensions from young rhesus macaques infected with SARS-CoV-2 (n = 6) demonstrates dynamic changes in transcriptional landscape 3 days post- SARS-CoV-2-infection (3dpi; peak viremia), relative to 14-17dpi (recovery phase) and pre-infection (baseline) showing accumulation of distinct populations of both macrophages and T-lymphocytes expressing strong interferon-driven inflammatory gene signature at 3dpi. Type I interferon response is induced in the plasmacytoid dendritic cells with appearance of a distinct HLADR+CD68+CD163+SIGLEC1+ macrophage population exhibiting higher angiotensin-converting enzyme 2 (ACE2) expression. These macrophages are significantly enriched in the lungs of macaques at 3dpi and harbor SARS-CoV-2 while expressing a strong interferon-driven innate anti-viral gene signature. The accumulation of these responses correlated with decline in viremia and recovery.


Subject(s)
COVID-19/immunology , Interferons/pharmacology , Myeloid Cells/immunology , SARS-CoV-2/drug effects , Animals , Antiviral Agents , Bronchoalveolar Lavage , Disease Models, Animal , Humans , Immunity, Innate , Inflammation , Interferon Type I/genetics , Interferon Type I/pharmacology , Interferons/genetics , Lung/immunology , Lung/pathology , Macaca mulatta , Macrophages/immunology , T-Lymphocytes/immunology
12.
Viruses ; 14(1)2021 12 29.
Article in English | MEDLINE | ID: covidwho-1639272

ABSTRACT

Inactivated vaccines based on cell culture are very useful in the prevention and control of many diseases. The most popular strategy for the production of inactivated vaccines is based on monkey-derived Vero cells, which results in high productivity of the virus but has a certain carcinogenic risk due to non-human DNA contamination. Since human diploid cells, such as MRC-5 cells, can produce a safer vaccine, efforts to develop a strategy for inactivated vaccine production using these cells have been investigated using MRC-5 cells. However, most viruses do not replicate efficiently in MRC-5 cells. In this study, we found that rabies virus (RABV) infection activated a robust interferon (IFN)-ß response in MRC-5 cells but almost none in Vero cells, suggesting that the IFN response could be a key limiting factor for virus production. Treatment of the MRC-5 cells with IFN inhibitors increased RABV titers by 10-fold. Additionally, the RABV titer yield was improved five-fold when using IFN receptor 1 (IFNAR1) antibodies. As such, we established a stable IFNAR1-deficient MRC-5 cell line (MRC-5IFNAR1-), which increased RABV production by 6.5-fold compared to normal MRC-5 cells. Furthermore, in a pilot-scale production in 1500 square centimeter spinner flasks, utilization of the MRC-5IFNAR1- cell line or the addition of IFN inhibitors to MRC cells increased RABV production by 10-fold or four-fold, respectively. Thus, we successfully established a human diploid cell-based pilot scale virus production platform via inhibition of IFN response for rabies vaccines, which could also be used for other inactivated virus vaccine production.


Subject(s)
Diploidy , Interferons/pharmacology , Rabies Vaccines/immunology , Rabies virus , Rabies/prevention & control , Animals , Antibodies, Viral , Cell Line , Chlorocebus aethiops , Gene Expression , Humans , Interferons/genetics , Receptor, Interferon alpha-beta/genetics , Vaccines, Inactivated/immunology , Vero Cells
13.
Inflammation ; 45(3): 1348-1361, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1637685

ABSTRACT

The oral mucosa is one of the first lines of the innate host defense system against microbial invasion. Interferon (IFN) lambda-1 (IFN-λ1), a type III IFN, exhibits type I IFN-like antiviral activity. In contrast to ubiquitously expressed type I IFN receptors, IFN-λ receptor 1 (IFN-λR1), which has higher affinity for type III IFNs than low-affinity interleukin (IL)-10 receptor 2, is mainly expressed on epithelial cells. Although IFN-λ1 has been shown to exert antiviral effects in the respiratory tract, gastrointestinal tract, and skin, the regulation of type III IFN receptor expression and its functions in the oral mucosa remain unclear. We herein showed the expression of IFN-λR1 in human gingival keratinocytes. The expression of IL-6, angiotensin-converting enzyme 2 (a critical molecule for severe acute respiratory syndrome coronavirus 2 infection), and IL-8 in human primary gingival keratinocytes (HGK) were significantly higher following treatments with either type I IFN (IFN-ß) or type II IFN (IFN-γ) than with IFN-λ1. However, the IFN-λ1 treatment strongly induced toll-like receptor (TLR) 3 and retinoic acid-inducible gene I (RIG-I), which mainly recognize viral nucleic acids, via the STAT1-mediated pathway. Furthermore, a stimulation with a RIG-I or TLR3 agonist promoted the production of IL-6, IL-8, and IFN-λ in HGK, which was significantly enhanced by a pretreatment with IFN-λ1. These results suggest that IFN-λ1 may contribute to the activation of innate immune responses to oral viral infections by up-regulating the expression of RIG-I and TLR3 and priming their functions in keratinocytes.


Subject(s)
Antiviral Restriction Factors , Interferons , Antiviral Restriction Factors/immunology , DEAD Box Protein 58/metabolism , Humans , Immunity, Innate , Interferons/immunology , Interferons/pharmacology , Interleukin-6 , Interleukin-8 , Mouth Mucosa/metabolism , Receptors, Immunologic/metabolism , Toll-Like Receptor 3/metabolism
14.
Bull Exp Biol Med ; 172(1): 53-56, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1520385

ABSTRACT

The antiviral activity of recombinant human IFN-lambda type 1 (IFNλ-1) against culture strain of SARS-CoV-2 virus was determined by infecting a highly sensitive VeroE6 coronavirus cell culture after preincubation test (the cell monolayer was incubated with 4-fold dilutions of IFNλ-1 in a concentration range of 0.16-42,500 ng/ml in a culture medium for 12 h at 37°C) and without preincubation (simultaneous addition of different concentrations of IFNλ-1 and SARS-CoV-2 infection in a dose of 102 TCID50). The created recombinant human IFNλ-1 demonstrated obvious antiviral activity against SARS-CoV-2 virus in vitro. In the tests with and without preincubation, IFNλ-1 exhibited significant activity, although somewhat lower in variant with simultaneous addition of IFNλ-1 and virus to the cell culture. It should be noted that the antiviral effect of IFNλ-1 was observed in a wide range of concentrations.


Subject(s)
Antiviral Agents/pharmacology , Interferons/pharmacology , Recombinant Proteins/pharmacology , SARS-CoV-2/drug effects , Viral Load/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/isolation & purification , COVID-19/virology , Chlorocebus aethiops , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Interferons/biosynthesis , Interferons/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , Vero Cells , Viral Load/genetics , COVID-19 Drug Treatment
15.
mBio ; 12(6): e0275621, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1494976

ABSTRACT

Outbreaks of emerging viral pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a major medical challenge. There is a pressing need for antivirals that can be rapidly deployed to curb infection and dissemination. We determined the efficacy of interferon lambda-1 (IFN-λ) as a broad-spectrum antiviral agent to inhibit SARS-CoV-2 infection and reduce pathology in a mouse model of disease. IFN-λ significantly limited SARS-CoV-2 production in primary human bronchial epithelial cells in culture. Pretreatment of human lung cells with IFN-λ completely blocked infectious virus production, and treatment with IFN-λ at the time of infection inhibited virus production more than 10-fold. To interrogate the protective effects of IFN-λ in response to SARS-CoV-2 infection, transgenic mice expressing the human angiotensin-converting enzyme 2 (ACE-2) were tested. One dose of IFN-λ administered intranasally was found to reduce animal morbidity and mortality. Our study with SARS-CoV-2 also revealed a sex differential in disease outcome. Male mice had higher mortality, reflecting the more severe symptoms and mortality found in male patients infected with SARS-CoV-2. The results indicate that IFN-λ potentially can treat early stages of SARS-CoV-2 infection and decrease pathology, and this murine model can be used to investigate the sex differential documented in COVID-19. IMPORTANCE The COVID-19 pandemic has claimed millions of lives worldwide. In this report, we used a preclinical mouse model to investigate the prophylactic and therapeutic value of intranasal IFN-λ for this acute respiratory disease. Specific vaccines have been responsible for curbing the transmission of SARS-CoV-2 in developed nations. However, vaccines require time to generate and keep pace with antigenic variants. There is a need for broad-spectrum prophylactic and therapeutic agents to combat new emerging viral pathogens. Our mouse model suggests IFN-λ has clinical utility, and it reflects the well-documented finding that male COVID-19 patients manifest more severe symptoms and mortality. Understanding this sex bias is critical for considering therapeutic approaches to COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/immunology , COVID-19/therapy , Epithelial Cells/drug effects , Interferons/immunology , Interferons/pharmacology , SARS-CoV-2/immunology , Administration, Intranasal , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents/pharmacology , Bronchi/cytology , Disease Models, Animal , Epithelial Cells/immunology , Epithelial Cells/virology , Female , HEK293 Cells , Humans , Interferons/classification , Lung/drug effects , Lung/pathology , Lung/virology , Male , Mice , Mice, Transgenic , Risk Factors , SARS-CoV-2/drug effects , Sex Factors
16.
Science ; 374(6571): 1099-1106, 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1467657

ABSTRACT

Molecular virology tools are critical for basic studies of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and for developing new therapeutics. Experimental systems that do not rely on viruses capable of spread are needed for potential use in lower-containment settings. In this work, we use a yeast-based reverse genetics system to develop spike-deleted SARS-CoV-2 self-replicating RNAs. These noninfectious self-replicating RNAs, or replicons, can be trans-complemented with viral glycoproteins to generate replicon delivery particles for single-cycle delivery into a range of cell types. This SARS-CoV-2 replicon system represents a convenient and versatile platform for antiviral drug screening, neutralization assays, host factor validation, and viral variant characterization.


Subject(s)
RNA, Viral/genetics , Replicon/physiology , SARS-CoV-2/genetics , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antiviral Agents/pharmacology , Cell Line , Humans , Interferons/pharmacology , Microbial Sensitivity Tests , Mutation , Plasmids , RNA, Viral/metabolism , Replicon/genetics , Reverse Genetics , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Saccharomyces cerevisiae/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Pseudotyping , Virion/genetics , Virion/physiology , Virus Replication
17.
ACS Chem Biol ; 16(5): 844-856, 2021 05 21.
Article in English | MEDLINE | ID: covidwho-1457790

ABSTRACT

Interferon-induced transmembrane proteins (IFITMs) are S-palmitoylated proteins in vertebrates that restrict a diverse range of viruses. S-palmitoylated IFITM3 in particular engages incoming virus particles, prevents their cytoplasmic entry, and accelerates their lysosomal clearance by host cells. However, how S-palmitoylation modulates the structure and biophysical characteristics of IFITM3 to promote its antiviral activity remains unclear. To investigate how site-specific S-palmitoylation controls IFITM3 antiviral activity, we employed computational, chemical, and biophysical approaches to demonstrate that site-specific lipidation of cysteine 72 enhances the antiviral activity of IFITM3 by modulating its conformation and interaction with lipid membranes. Collectively, our results demonstrate that site-specific S-palmitoylation of IFITM3 directly alters its biophysical properties and activity in cells to prevent virus infection.


Subject(s)
Antiviral Agents/chemistry , Cell Membrane/metabolism , Interferons/chemistry , Lipids/chemistry , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , Amino Acid Sequence , Antiviral Agents/pharmacology , Binding Sites , Cell Membrane/ultrastructure , Computational Biology , Drug Design , Humans , Interferons/pharmacology , Lipoylation , Lysosomes/metabolism , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Signal Transduction
18.
Viruses ; 13(8)2021 08 12.
Article in English | MEDLINE | ID: covidwho-1436097

ABSTRACT

Type III interferons (lambda IFNs) are a quite new, small family of three closely related cytokines with interferon-like activity. Attention to IFN-λ is mainly focused on direct antiviral activity in which, as with IFN-α, viral genome replication is inhibited without the participation of immune system cells. The heterodimeric receptor for lambda interferons is exposed mainly on epithelial cells, which limits its possible action on other cells, thus reducing the likelihood of developing undesirable side effects compared to type I IFN. In this study, we examined the antiviral potential of exogenous human IFN-λ1 in cellular models of viral infection. To study the protective effects of IFN-λ1, three administration schemes were used: 'preventive' (pretreatment); 'preventive/therapeutic' (pre/post); and 'therapeutic' (post). Three IFN-λ1 concentrations (from 10 to 500 ng/mL) were used. We have shown that human IFN-λ1 restricts SARS-CoV-2 replication in Vero cells with all three treatment schemes. In addition, we have shown a decrease in the viral loads of CHIKV and IVA with the 'preventive' and 'preventive/therapeutic' regimes. No significant antiviral effect of IFN-λ1 against AdV was detected. Our study highlights the potential for using IFN-λ as a broad-spectrum therapeutic agent against respiratory RNA viruses.


Subject(s)
Adenoviruses, Human/drug effects , Chikungunya virus/drug effects , Influenza A virus/drug effects , Interferons/pharmacology , SARS-CoV-2/drug effects , A549 Cells , Adenoviruses, Human/physiology , Animals , Chikungunya virus/physiology , Chlorocebus aethiops , Dose-Response Relationship, Drug , Gene Expression Regulation , Humans , Influenza A virus/physiology , Interferons/therapeutic use , Interleukins , RNA Virus Infections/drug therapy , RNA Virus Infections/prevention & control , Recombinant Proteins/pharmacology , SARS-CoV-2/physiology , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects , Interferon Lambda
19.
Cytokine ; 140: 155430, 2021 04.
Article in English | MEDLINE | ID: covidwho-1385381

ABSTRACT

In vitro interferon (IFN)α treatment of primary human upper airway basal cells has been shown to drive ACE2 expression, the receptor of SARS-CoV-2. The protease furin is also involved in mediating SARS-CoV-2 and other viral infections, although its association with early IFN response has not been evaluated yet. In order to assess the in vivo relationship between ACE2 and furin expression and the IFN response in nasopharyngeal cells, we first examined ACE2 and furin levels and their correlation with the well-known marker of IFNs' activation, ISG15, in children (n = 59) and adults (n = 48), during respiratory diseases not caused by SARS-CoV-2. A strong positive correlation was found between ACE2 expression, but not of furin, and ISG15 in all patients analyzed. In addition, type I and III IFN stimulation experiments were performed to examine the IFN-mediated activation of ACE2 isoforms (full-length and truncated) and furin in epithelial cell lines. Following all the IFNs treatments, only the truncated ACE2 levels, were upregulated significantly in the A549 and Calu3 cells, in particular by type I IFNs. If confirmed in vivo following IFNs' activation, the induction of the truncated ACE2 isoform only would not enhance the risk of SARS-CoV-2 infection in the respiratory tract.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/prevention & control , Epithelial Cells/drug effects , Gene Expression/drug effects , Interferons/pharmacology , SARS-CoV-2/drug effects , A549 Cells , Adult , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , COVID-19/virology , Cell Line, Tumor , Child , Cytokines/genetics , Epithelial Cells/metabolism , Humans , Interferons/metabolism , Lung/cytology , Middle Aged , SARS-CoV-2/physiology , Ubiquitins/genetics
20.
STAR Protoc ; 2(4): 100781, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1356489

ABSTRACT

We present a protocol for analyzing the impact of SARS-CoV-2 proteins in interferon signaling using luciferase reporter assays. Here, the induction of defined promoters can be quantitatively assessed with high sensitivity and broad linear range. The results are similar to those obtained using qPCR to measure endogenous mRNA induction. The assay requires stringent normalization and confirmation of the results in more physiological settings. The protocol is adaptable for other viruses and other innate immune stimuli. For complete details on the use and execution of this protocol, please refer to Hayn et al. (2021).


Subject(s)
COVID-19/pathology , Gene Expression Regulation, Viral/drug effects , Interferons/pharmacology , Luciferases/metabolism , RNA, Messenger/metabolism , SARS-CoV-2/metabolism , Viral Proteins/metabolism , Antiviral Agents/pharmacology , COVID-19/metabolism , COVID-19/virology , Humans , Luciferases/genetics , Promoter Regions, Genetic , RNA, Messenger/genetics , SARS-CoV-2/drug effects , Viral Proteins/genetics , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL